Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38640794

RESUMO

Chromatography is a robust and reliable separation method that can use various stationary phases to separate complex mixtures commonly seen in metabolomics. This review examines the types of chromatography and stationary phases that have been used in targeted or untargeted metabolomics with methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. General considerations for sample pretreatment and separations in metabolomics are considered, along with the various supports and separation formats for chromatography that have been used in such work. The types of liquid chromatography (LC) that have been most extensively used in metabolomics will be examined, such as reversed-phase liquid chromatography and hydrophilic liquid interaction chromatography. In addition, other forms of LC that have been used in more limited applications for metabolomics (e.g., ion-exchange, size-exclusion, and affinity methods) will be discussed to illustrate how these techniques may be utilized for new and future research in this field. Multidimensional LC methods are also discussed, as well as the use of gas chromatography and supercritical fluid chromatography in metabolomics. In addition, the roles of chromatography in NMR- vs. MS-based metabolomics are considered. Applications are given within the field of metabolomics for each type of chromatography, along with potential advantages or limitations of these separation methods.

2.
Anal Chem ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619932

RESUMO

Two-dimensional Fourier transform ion cyclotron resonance (2D FTICR) mass spectrometry is a developing form of data-independent acquisition that allows for the simultaneous fragmentation and correlation of fragment ions to their precursors across a range of m/z values. The modern usage of 2D FTICR is performed using electrospray ionization (ESI) as the dried droplet preparation for matrix-assisted laser desorption ionization (MALDI) does not produce a consistent packet of ions over a number of scans. This work uses pneumatic spray techniques from mass spectrometry imaging to create a homogeneous surface for use with MALDI as an ionization source for 2D FTICR. A mixture of peptides and matrix was deposited onto a glass slide using an HTX pneumatic sprayer. MALDI was then used to ionize the peptide mixture for use with a standard 2D FTICR pulse sequence. The generated 2D spectrum reveals comparable structural information to spectra collected in a 1D experiment. Artifacts observed in the collected 2D MALDI spectra do not significantly differ from those expected from 2D ESI spectra.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38460447

RESUMO

Human serum albumin (HSA) is known to undergo modifications by glucose during diabetes. This process produces glycated HSA that can have altered binding to some drugs. In this study, high-performance affinity microcolumns and competition studies were used to see how glycation affects the binding by two thiazolidinedione-class drugs (i.e., pioglitazone and rosiglitazone) at specific regions of HSA. These regions included Sudlow sites I and II, the tamoxifen and digitoxin sites, and a drug-binding site located in subdomain IB. At Sudlow site II, the association equilibrium constants (or binding constants) for pioglitazone and rosiglitazone with normal HSA were 1.7 × 105 M-1 and 2.0 × 105 M-1 at pH 7.4 and 37 °C, with values that changed by up to 5.7-fold for glycated HSA. Sudlow site I of normal HSA had binding constants for pioglitazone and rosiglitazone of 3.4 × 105 M-1 and 4.6 × 105 M-1, with these values changing by up to 1.5-fold for glycated HSA. Rosiglitazone was found to also bind a second region that had a positive allosteric effect on Sudlow site I for all the tested preparations of HSA (binding affinity, 1.1-3.2 × 105 M-1; coupling constant for Sudlow site I, 1.20-1.34). Both drugs had a strong positive allosteric effect on the tamoxifen site of HSA (coupling constants, 13.7-19.9 for pioglitazone and 3.7-11.5 for rosiglitazone). Rosiglitazone also had weak interactions at a site in subdomain IB, with a binding constant of 1.4 × 103 M-1 for normal HSA and a value that was altered by up to 6.8-fold with glycated HSA. Neither of the tested drugs had any significant binding at the digitoxin site. The results were used to produce affinity maps that described binding by these thiazolidinediones with HSA and the effects of glycation on these interactions during diabetes.


Assuntos
Diabetes Mellitus , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Hipoglicemiantes/química , Reação de Maillard , Rosiglitazona , Pioglitazona , Ligação Proteica , Albumina Sérica/química , Tamoxifeno , Digitoxina , Cromatografia de Afinidade/métodos , Sítios de Ligação
4.
Artigo em Inglês | MEDLINE | ID: mdl-37599059
5.
Curr Protoc ; 3(8): e867, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37610261

RESUMO

Immunoaffinity chromatography (IAC) is a type of liquid chromatography that uses immobilized antibodies or related binding agents as selective stationary phases for sample separation or analysis. The strong binding and high selectivity of antibodies have made IAC a popular tool for the purification and analysis of many chemicals and biochemicals, including proteins. The basic principles of IAC are described as related to the use of this method for protein purification and analysis. The main factors to consider in this technique are also presented under a discussion of the general strategy to follow during the development of a new IAC method. Protocols, as illustrated using human serum albumin (HSA) as a model protein, are provided for the use of IAC in several formats. This includes both the use of IAC with traditional low-performance supports such as agarose for off-line immunoextraction and supports used in high-performance IAC for on-line immunoextraction. The use of IAC for protein analysis as a flow-based or chromatographic immunoassay is also discussed and described using HSA and a competitive binding assay format as an example. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Off-line immunoextraction by traditional immunoaffinity chromatography Basic Protocol 2: On-line immunoextraction by high-performance immunoaffinity chromatography Basic Protocol 3: Competitive binding chromatographic immunoassay.


Assuntos
Anticorpos Imobilizados , Anticorpos , Humanos , Cromatografia de Afinidade , Técnicas Imunológicas , Cromatografia Líquida , Albumina Sérica Humana
6.
J Chromatogr A ; 1707: 464307, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37619255

RESUMO

Ultrafast affinity extraction (UAE) is a form of microscale affinity HPLC that can be employed to quickly measure equilibrium constants for solute-binding agent interactions in solution. This study used chromatographic and equilibrium theory with universal plots to examine the general conditions that are needed in UAE to obtain accurate, precise, and robust measurements of equilibrium constants for such interactions. The predicted results were compared to those obtained by UAE in studies that examined the binding of various drugs with two transport proteins: human serum albumin and α1-acid glycoprotein. The most precise and robust conditions for these binding studies occurred for systems with intermediate values for their equilibrium free fraction for the solute (F0 ≈ 0.20-0.80). These trends showed good agreement with those seen in prior studies using UAE. It was further determined how the apparent free fraction of a solute was related to the dissociation rate of this solute, the time allowed for solute dissociation during UAE, and the equilibrium free fraction for the solute. These results also agreed with experimental results, as obtained for the binding of warfarin and gliclazide with human serum albumin. The final section examined how a change in the apparent free fraction, as caused by solute dissociation, affected the accuracy of an equilibrium constant that was measured by UAE. In addition, theoretical plots were generated to allow the selection of conditions for UAE that provided a given level of accuracy during the measurement of an equilibrium constant. The equations created and trends identified for UAE were general ones that can be extended in future work to other solutes and binding agents.


Assuntos
Gliclazida , Humanos , Cromatografia Líquida de Alta Pressão , Orosomucoide , Albumina Sérica Humana , Varfarina
7.
Artigo em Inglês | MEDLINE | ID: mdl-37331054

RESUMO

Modification of proteins can occur during diabetes due to the formation of advanced glycation end-products (AGEs) with reactive dicarbonyls such as glyoxal (Go) and methylglyoxal (MGo). Human serum albumin (HSA) is a serum protein that binds to many drugs in blood and that is known to be modified by Go and MGo. This study examined the binding of various sulfonylurea drugs with these modified forms of HSA by using high-performance affinity microcolumns prepared by non-covalent protein entrapment. Zonal elution experiments were employed to compare the retention and overall binding constants for the drugs with Go- or MGo-modified HSA vs normal HSA. The results were compared to values from the literature, such as measured or estimated using affinity columns containing covalently immobilized HSA or biospecifically-adsorbed HSA. The entrapment-based approach provided estimates of global affinity constants within 3-5 min for most of the tested drugs and with typical precisions of ±10-23%. Each entrapped protein microcolumn was stable for over at least 60-70 injections and one month of use. The results obtained with normal HSA agreed at the 95% confidence level with global affinity constants that have been reported for the given drugs in the literature. It was found for HSA that had been modified with clinically-relevant levels of either Go or MGo that an increase in the global affinity constant of up to 2.1-fold occurred for some of the tested drugs. The information acquired in this study can be used in the future to adapt this entrapment-based approach to study and evaluate interactions between other types of drugs and normal or modified binding agents for clinical testing and biomedical research.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica Humana/química , Albumina Sérica/química , Óxido de Magnésio , Ligação Proteica , Cromatografia de Afinidade/métodos , Compostos de Sulfonilureia/química
8.
Anal Chim Acta ; 1239: 340629, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628740

RESUMO

Reversible interactions between drugs and humic acid in water can be an important factor in determining the bioavailability and effects of these pharmaceuticals as micropollutants in the environment. In this study, microcolumns containing entrapped humic acid were used in high-performance affinity chromatography (HPAC) to examine the binding of this agent with the drugs tetracycline, carbamazepine, ciprofloxacin, and norfloxacin. Parameters that were varied to optimize the entrapment of humic acid within HPLC-grade porous silica included the starting concentration of humic acid, the mass ratio of humic acid vs silica, and the method of mixing the reagents with the support for the entrapment process. The highest retention for the tested drugs was obtained when using supports that were prepared using an initial humic acid concentration of 80 mg mL-1 and a humic acid vs silica mass ratio of 600 mg per g silica, along with preincubation of the humic acid with hydrazide-activated silica before the addition of a capping agent (i.e., oxidized glycogen). Characterization of the humic acid support was also carried out by means of TGA, FTIR, SEM, and energy-dispersive X-ray spectroscopy. The binding constants measured by HPAC for the given drugs with entrapped Aldrich humic acid gave good agreement with values reported in the literature under similar pH and temperature conditions for this and other forms of humic acid. Besides providing valuable data on the binding strength of various drugs with humic acid, this work illustrates how HPAC may be used as an analytical tool for screening and characterizing the interactions of drugs and man-made contaminants with humic acid or related binding agents in water and the environment.


Assuntos
Substâncias Húmicas , Albumina Sérica , Humanos , Albumina Sérica/química , Carbamazepina , Cromatografia de Afinidade/métodos , Dióxido de Silício/química
9.
Electrophoresis ; 43(23-24): 2302-2323, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36250426

RESUMO

Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug-protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.


Assuntos
Proteínas Sanguíneas , Eletroforese Capilar , Eletroforese Capilar/métodos , Proteínas Sanguíneas/química , Interações Medicamentosas
10.
Artigo em Inglês | MEDLINE | ID: mdl-36272357

RESUMO

Ultrafast affinity extraction (UAE) and affinity microcolumns containing immobilized human serum albumin (HSA) were employed to evaluate the effect of advanced stage glycation on HSA and its binding to warfarin, a common site-specific probe for Sudlow site I of this protein. The modification of HSA by glyoxal (GO) and methylglyoxal (MGO) was considered, where GO and MGO are known to be important in the formation of many types of advanced glycation end products. Free drug fractions were measured by UAE for warfarin in solutions containing normal HSA or HSA that had been modified by GO or MGO at levels seen in serum during diabetes. The free fractions measured with the GO-modified HSA gave association equilibrium constants that ranged from 2.42-2.63 × 105 M-1 at pH 7.4 and 37 °C. These values were not significantly different from a value of 2.33 (±0.15) × 105 M-1 that was determined by the same method for warfarin with normal HSA. Similar studies using MGO-modified HSA gave association equilibrium constants for warfarin in the range of 3.07-3.31 × 105 M-1, which were 1.32- to 1.42-fold higher than the value seen for normal HSA (differences that were significant at the 95% confidence level). These results will be valuable in future binding studies based on affinity chromatography or other methods that employ warfarin as a probe to examine drug interactions at Sudlow site I of HSA and modified forms of this protein. This work also illustrates how UAE can be used, with analysis times of only minutes, to detect and measure small changes in the binding by drugs with unmodified or modified forms of a soluble binding agent or protein.


Assuntos
Albumina Sérica Humana , Varfarina , Humanos , Varfarina/química , Albumina Sérica Humana/química , Aldeído Pirúvico , Glioxal , Albumina Sérica/química , Óxido de Magnésio , Ligação Proteica , Cromatografia de Afinidade/métodos
11.
J Sep Sci ; 45(23): 4176-4186, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36168862

RESUMO

High-performance affinity microcolumns were used to characterize binding by the anti-diabetic drugs repaglinide and nateglinide with normal and glycated forms of human serum albumin. The microcolumns contained only nmol amounts of protein and provided a detailed analysis of these drug interactions with good precision and in a matter of minutes per experiment. The overall binding by repaglinide to normal and glycated albumin fits a model with two types of binding sites: a set of one or two moderate-to-high affinity regions and a larger set of weaker regions with association equilibrium constants of ∼105 and 103  M-1 , respectively, at pH 7.4 and 37°C. Competition studies gave site-specific association constants for repaglinide and nateglinide at Sudlow site I of 4.2 × 104 and 5.0 × 104  M-1 for normal albumin, with a decrease of 26%-30% being seen for nateglinide with glycated albumin and no significant change being noted for repaglinide. At Sudlow site II, repaglinide and nateglinide had association constants for normal albumin of 6.1 × 104 and 7.1 × 105  M-1 , with glycated albumin giving an increase in the association constant at this site for repaglinide of 1.6- to 1.8-fold and a decrease for nateglinide of 51%-58%.


Assuntos
Albuminas , Albumina Sérica Humana , Humanos , Nateglinida
12.
Methods Mol Biol ; 2466: 205-227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585320

RESUMO

Entrapment is a noncovalent immobilization method that enables a large biological binding agent, such as a protein, to be put within a support without modifying the structure of the binding agent. This chapter describes an on-column entrapment method that can be used with proteins and HPLC-grade silica to prepare columns for high-performance liquid chromatography. In this method, a protein is trapped within a dihydrazide-activated silica support by using oxidized glycogen as a capping agent. This method allows the protein to be placed within the support in a soluble form and with little or no loss of activity. The approach and reagents needed for this method are described in this chapter, along with some applications reported for columns that have been made using on-column protein entrapment.


Assuntos
Proteínas , Dióxido de Silício , Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão/métodos , Glicogênio/química , Dióxido de Silício/química
13.
J Sep Sci ; 45(12): 2077-2092, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35230731

RESUMO

Antibody-based therapeutic agents and other biopharmaceuticals are now used in the treatment of many diseases. However, when these biopharmaceuticals are administrated to patients, an immune reaction may occur that can reduce the drug's efficacy and lead to adverse side-effects. The immunogenicity of biopharmaceuticals can be evaluated by detecting and measuring antibodies that have been produced against these drugs, or antidrug antibodies. Methods for antidrug antibody detection and analysis can be important during the selection of a therapeutic approach based on such drugs and is crucial when developing and testing new biopharmaceuticals. This review examines approaches that have been used for antidrug antibody detection, measurement, and characterization. Many of these approaches are based on immunoassays and antigen binding tests, including homogeneous mobility shift assays. Other techniques that have been used for the analysis of antidrug antibodies are capillary electrophoresis, reporter gene assays, surface plasmon resonance spectroscopy, and liquid chromatography-mass spectrometry. The general principles of each approach will be discussed, along with their recent applications with regards to antidrug antibody analysis.


Assuntos
Produtos Biológicos , Anticorpos/análise , Humanos , Imunoensaio/métodos , Ressonância de Plasmônio de Superfície
14.
Artigo em Inglês | MEDLINE | ID: mdl-34823097

RESUMO

Ultrafast affinity extraction (UAE) has recently been developed and employed for measuring non-bound (or free) fractions and binding or rate constants for drugs and other targets with soluble binding agents such as serum proteins. This study examined the long-term stability of 10 mm × 2.1 mm i.d. affinity microcolumns when used in UAE at both low and high flow rates (e.g., 0.5 and 3.5 mL/min) over an extended series of injections. This stability was investigated by using immobilized human serum albumin (HSA) and samples containing the drug warfarin with or without soluble HSA as a model system. The free warfarin fractions measured at 0.5 mL/min in the presence of soluble HSA were stable up to 150 injections and changed by <10% at 3.5 mL/min. The association equilibrium constant for warfarin with HSA that was estimated by UAE at 3.5 mL/min had no significant change over 50 injections and a change of only ∼18-22% over 100-150 injections. The dissociation rate constant for warfarin from HSA was found by combining UAE results at 0.5 and 3.5 mL/min and employing a new two-point approach, with no significant changes in this value being seen even after 200 injections. The effects of extended microcolumn use on the retention time, peak width, and peak asymmetry for warfarin, and on the backpressure of the microcolumn, were also considered. These results indicated that UAE and HSA microcolumns could be used to provide consistent values for free solute fractions, binding constants, and rate constants over a large series of injections. These results should be useful in future work by providing guidelines for the assessment, further development, and use of UAE in characterizing interactions involving other drugs and binding agents in solution-based samples.


Assuntos
Cromatografia de Afinidade/instrumentação , Cromatografia de Afinidade/métodos , Humanos , Modelos Lineares , Modelos Químicos , Ligação Proteica , Reprodutibilidade dos Testes , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Fatores de Tempo , Varfarina/análise , Varfarina/química , Varfarina/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-34274643

RESUMO

Separations based on combinations of 2.1 mm I.D. high-performance affinity microcolumns and capillary electrophoresis were developed and used to characterize the glycoforms of an intact glycoprotein. Human alpha1-acid glycoprotein (AGP) was used as a model analyte due to its heterogeneous glycosylation resulting from variations in its degree of branching, fucosylation, and number of sialic acids. Three separation formats were examined based on microcolumns that contained the lectins concanavalin A (Con A) or Aleuria aurantia lectin (AAL). These microcolumns were used with one another or in combination with capillary electrophoresis. N-Glycan analysis of the non-retained and retained AGP fractions was carried out by using PNGase F digestion and nanoflow electrospray ionization mass spectrometry. Con A microcolumns were found to selectively enrich AGP that contained bi-antennary N-glycans, while AAL microcolumns retained AGP with fucose-containing N-glycans. Results from these separation methods indicated that fucosylation of the N-linked glycans was more abundant when a high degree of branching was present in AGP. Sialic acid residues were more abundant when higher degrees of branching and more fucose residues were present in AGP. The separation and analysis methods that were developed could be used with relatively small amounts of AGP and can be adapted for use with other intact glycoproteins.


Assuntos
Cromatografia de Afinidade/métodos , Eletroforese Capilar/métodos , Lectinas/metabolismo , Orosomucoide , Glicoproteínas/análise , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Lectinas/química , Ácido N-Acetilneuramínico/química , Orosomucoide/análise , Orosomucoide/química , Orosomucoide/isolamento & purificação , Polissacarídeos/química
16.
Electrophoresis ; 42(24): 2577-2598, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34293192

RESUMO

Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.


Assuntos
Cromatografia de Afinidade , Adsorção , Ligantes
17.
J Pharm Biomed Anal ; 201: 114097, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33933705

RESUMO

During diabetes human serum albumin (HSA), an important drug transport protein, can be modified by agents such as glyoxal (Go) and methylglyoxal (MGo) to form advanced glycation end-products. High-performance affinity microcolumns and zonal elution competition studies were used to compare interactions by the anti-diabetic drugs repaglinide and nateglinide with normal and Go- or MGo-modified HSA at Sudlow sites I and II of this protein. Both drugs had their strongest binding at Sudlow site II for the normal and modified forms of HSA. The association equilibrium constants at this site for repaglinide and nateglinide with normal HSA were 6.1 (± 0.2) × 104 M-1 and 7.1 (± 0.8) × 105 M-1, respectively, at pH 7.4 and 37°C; these values increased by up to 3.6-fold for repaglinide and decreased by up to 45-55 % for nateglinide when HSA was modified by Go or MGo at levels seen in prediabetes or diabetes. Both drugs were also found to bind at Sudlow site I, with association equilibrium constants at this site on normal HSA of 4.2 (± 0.3) × 104 M-1 for repaglinide and 5.0 (± 0.1) × 104 M-1 for nateglinide. The binding strength for repaglinide at Sudlow site I increased by 1.3- to 1.7-fold with the Go-modified HSA and decreased slightly (i.e., up to 19 %) for the MGo-modified HSA, while nateglinide showed only a small or insignificant change in binding with the same modified HSA samples. These results indicated that binding by repaglinide and nateglinide with HSA can be altered significantly by modification of this protein with Go or MGo, making these modifications of potential interest in the treatment of patients with these drugs during diabetes.


Assuntos
Glioxal , Aldeído Pirúvico , Carbamatos , Cromatografia de Afinidade , Glicosilação , Humanos , Nateglinida , Piperidinas , Ligação Proteica , Albumina Sérica/metabolismo , Albumina Sérica Humana/metabolismo
18.
J Pharm Biomed Anal ; 202: 114135, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34022667

RESUMO

2-Imidazoline drugs are used in a variety of applications, such as the treatment of hypertension and opioid withdrawal. It is known these drugs bind to serum proteins and have significant variations within this class of compounds in the overall level of this binding. However, little specific information is available on the interactions of these compounds with the two major transport proteins for many drugs, human serum albumin (HSA) and alpha1-acid glycoprotein (AGP). This study examined binding by 2-imidazolines to these proteins by using 25 mm × 2.1 mm i.d. high-performance affinity microcolumns that contained HSA or AGP. The drugs that were examined were antazoline, clonidine, dexmedetomidine, lofexidine, moxonidine, phentolamine, and tizanidine, which represented a wide range of structures and pharmaceutical applications. The major metabolite of lofexidine, N-(2-aminoethyl)-2-(2,6-dichlorophenoxy) propenamide (LADP), was also examined. All these 2-imidazolines were found to have weak-to-moderate binding to HSA, with global affinities that ranged from 1.62 × 102 to 1.07 × 104 M-1 at pH 7.4 and 37 °C. These compounds had stronger binding with AGP, with global affinities constants ranging from 3.80 × 102 to 1.85 × 104 M-1. No stereoselectivity was observed by HSA for the enantiomers of dexmedetomidine, lofexidine, or LADP. However, AGP did show some stereoselectivity for lofexidine and LADP but not for dexmedetomidine. These results provide a better understanding of interactions of 2-imidazoline with HSA vs AGP in the circulation and of how this binding can change between drugs within this class of compounds.


Assuntos
Imidazolinas , Orosomucoide , Cromatografia de Afinidade , Humanos , Imidazóis , Orosomucoide/metabolismo , Ligação Proteica , Albumina Sérica Humana/metabolismo
19.
J Chromatogr A ; 1649: 462240, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34034105

RESUMO

Many drugs bind to serum transport proteins, which can affect both drug distribution and activity in the body. α1-Acid glycoprotein (AGP) is a key transport protein for basic and neutral drugs. Both elevated levels and altered glycosylation patterns of AGP have been seen in clinical conditions such as systemic lupus erythematosus (SLE). This study developed, optimized, and used the method of ultrafast affinity extraction (UAE) to examine whether these changes in AGP are associated with changes in the binding by some drugs to this transport protein. This approach used affinity microcolumns to capture and measure, in serum, the free fractions of several drugs known to bind AGP. These measurements were made with pooled normal control serum and serum samples from individuals with SLE. Immunoaffinity chromatography was used to obtain the content of AGP and HSA in these samples, and CE was used to examine the glycoform pattern for AGP in each serum sample. The free drug fractions measured for normal control serum ranged from 3.5 to 29.1%, in agreement with the results of ultrafiltration, and provided binding constants of ~105-106 M-1 for the given drugs with AGP at 37°C. Analysis of a screening set of SLE serum samples by UAE gave decreased free fractions (relative change, 12-55%) vs normal serum when spiked with the same types and amounts of drugs. These changes were related in some cases to AGP content, with some SLE samples having AGP levels 1.3- to 2.1-fold above the upper end of the normal range. In other cases, the changes in free fractions appeared to be linked to alterations in the glycoforms and binding constants of AGP, with some affinities differing by 1.2- to 1.5-fold vs normal AGP. This approach can be employed with other solute-protein systems and to investigate binding by other drugs or transport proteins directly in clinical samples.


Assuntos
Proteínas Sanguíneas/metabolismo , Orosomucoide/metabolismo , Preparações Farmacêuticas/sangue , Cromatografia de Afinidade/métodos , Glicosilação , Humanos , Lúpus Eritematoso Sistêmico/sangue , Ligação Proteica
20.
Adv Chromatogr ; 58: 1-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36186535

RESUMO

Affinity chromatography is a technique that uses a stationary phase based on the supramolecular interactions that occur in biological systems or mimics of these systems. This method has long been a popular tool for the isolation, measurement, and characterization of specific targets in complex samples. This review discusses the basic concepts of this method and examines recent developments in affinity chromatography and related supramolecular separation methods. Topics that are examined include advances that have occurred in the types of supports, approaches to immobilization, and binding agents that are employed in this method. New developments in the applications of affinity chromatography are also summarized, including an overview on the use of this method for biochemical purification, sample preparation or analysis, chiral separations, and biointeraction studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...